# FÉDÉRATION DES MICRO NANO TECHNOLOGIES (FMNT, FR2542)

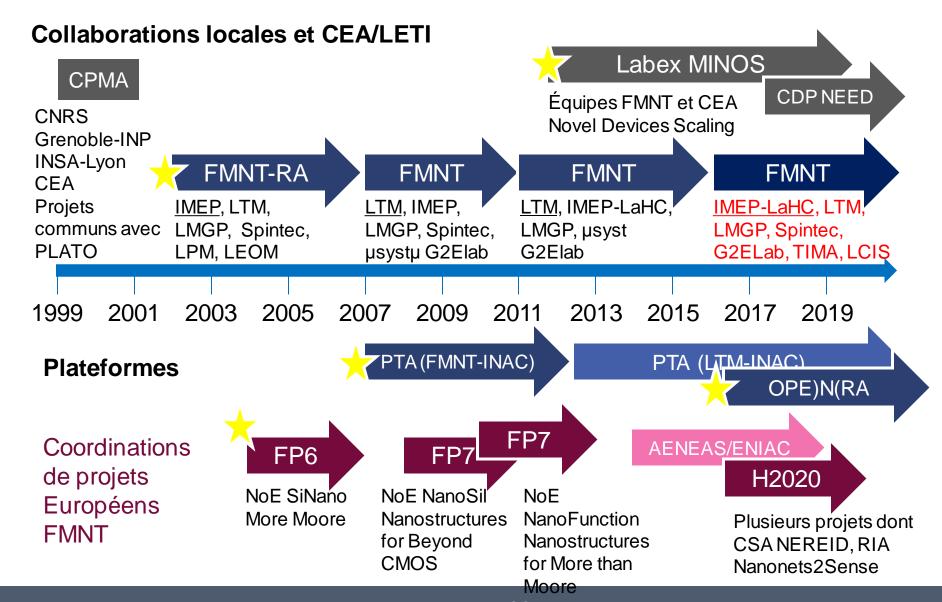
## Rencontre ATSG / FMNT

Grenoble le 6 décembre 2021

Alain SYLVESTRE, Skandar BASROUR

## **SOMMAIRE**




- Présentation de la FMNT
  - Les laboratoires Périmètre scientifique
  - Objectifs Missions
  - Axes stratégiques de recherche
  - Plateforme OPE)N(RA
- Présentation des activités de recherche de l'axe
   Composants et Systèmes pour la Biologie et la Santé
  - Biomatériaux pour la santé
  - Outils de diagnostic
  - Systèmes implantables



## PRÉSENTATION DE LA FMNT LES LABORATOIRES - PÉRIMÈTRE SCIENTIFIQUE

## **FMNT: GENESE**





## **FMNT EN 2022**



- Fédération de recherche (FR 2542)
  - Créée en 2002
  - Tutelles: CNRS, Grenoble INP, UGA, USMB (tutelle partenaire)
- 21 équipes de 7 laboratoires du pôle PEM de l'UGA
  - Fédération de 500 personnes.
  - A Grenoble et au Bourget du Lac: IMEP-LaHC,
  - A Grenoble LMGP, LTM, SPINTEC, 2 équipes de TIMA, 3 équipes du G2Elab
  - A Valence: 1 équipe du LCIS
- Thématiques communes :
  - Microélectronique, Nanotechnologies, Microsystèmes

## 21 ÉQUIPES DE 7 LABORATOIRES



| Laboratoire | Équipes impliquées dans la FMNT (avec leurs responsables)                        |            |  |
|-------------|----------------------------------------------------------------------------------|------------|--|
| LMGP        | Couches minces fonct. et nano-ingénierie des surf. (J-L. Deschanvres, D. Muñoz-F | oise)      |  |
|             | Nanomatériaux et hétérostructures avancées (H. Renevier, V. Consonni)            |            |  |
|             | Interfaces entre Matériaux et Matière Biologique (M. Weidenhaupt)                |            |  |
| LTM         | Lithographie avancée (C. Gourgon)                                                | Du         |  |
|             | Micro et Nanotechnologies pour la santé (D. Peyrade)                             |            |  |
|             | Nanomatériaux et intégration (B. Salem)                                          | matériau   |  |
|             | Gravure plasma (G. Cunge)                                                        | at         |  |
| IMEP-LaHC   | Composants micro nanoélectroniques (CMNE, E. Bano)                               | 약          |  |
|             | Radiofréquences et millimétrique (RFM, P. Xavier)                                | <u>ත</u> . |  |
|             | Photonique, optoélectronique THz et optomicroondes, (PHC, F. Garet)              |            |  |
| SPINTEC     | Mémoires magnétiques MRAM (R. Sousa)                                             | മ          |  |
|             | Composants logiques non volatiles (G. Prenat)                                    | au         |  |
|             | Capteurs (C. Baraduc)                                                            | S          |  |
|             | Nano magnétisme pour la biologie (R. Morei, 10                                   | <b>'</b>   |  |
|             | Dynamique et dispositifs RF (U. Ebels) nouvelles                                 | <b>S</b>   |  |
| G2ELAB      | MADEA+ (N. Galopin, O. Cugat) équipes                                            | système    |  |
|             | Matériaux diélectriques et électrostatiques (MDE, O./                            | Ĭ          |  |
|             | Intégration en électronique de puissance (EP, Y. Av                              | (D         |  |
| TIMA        | Micro et Nano Systèmes (CDSI/MNS, S. Basrour)                                    |            |  |
|             | Systèmes intégrés mixtes fiables (RMS, E. Simeu)                                 |            |  |
| LCIS        | Systèmes Optoélectroniques et Radiofréquences (ORSYS, E. Perret)                 |            |  |
|             |                                                                                  |            |  |

## PERIMETRE SCIENTIFIQUE: NOS ATOUTS



#### **Domaines applicatifs**

- STIC
- Energie
- 🟮 Bio Santé

Systèmes

Circuits

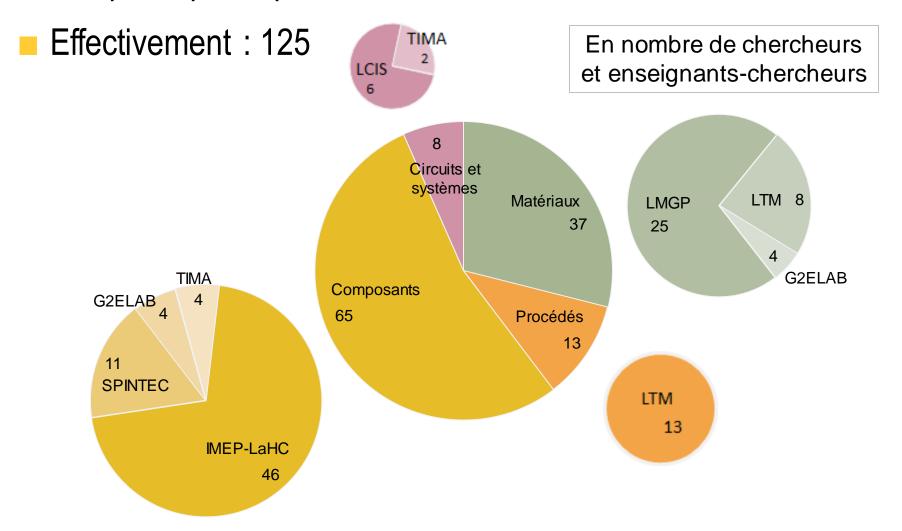
Procédés

Composants

Matériaux

#### Compétences

- Croissance et fabrication
- Caractérisation et test
- Conception et simulation


#### Axes stratégiques

- Microélectronique
- Composants et systèmes pour les télécommunications
- Dispositifs de mesure intégrés
- Matériaux et composants pour l'énergie
- Bio et santé: composants et systèmes

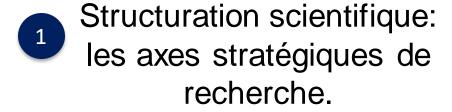
## PERIMETRE SCIENTIFIQUE: NOS ATOUTS



500 participants potentiels






## PRÉSENTATION DE LA FMNT OBJECTIFS - MISSIONS

## **NOS OBJECTIFS**



## Une FMNT structurante et visible







Partage des moyens: la plateforme OPE)N(RA.



Visibilité: communication interne et externe.

## **MISSIONS**



#### COMITE DE PILOTAGE

L. Nicolas (INSIS)

M. Fraisse (DR11)

H. Courtois(VP Rech.)

V. Perrier (VPCS)

M. Sabatier (VP Rech.)



#### DIRECTION

A. Sylvestre – Directeur

S. Basrour - Directeur adjoint

C. Lo Cicero – Resp. Admin Financière

#### COMITE DIRECTEUR

## REPRESENTANTS DE LA DIRECTION DES LABORATOIRES

A. Kaminski (IMEP-LaHC), C. Jimenez (LMGP), T. Baron (LTM), L. Prejbeanu (SPINTEC), G. di Natale (TIMA), N. Hadjsaid (G2Elab), M. Besacier (LTM), V. Beroulle (LCIS), L. Fesquet (TIMA), E. Ghibaudo (IMEP-LaHC), F. Bruckert (LMGP), O. Fruchart (SPINTEC), O. Cugat (G2Elab), N. Barbot (LCIS)

#### 3 Communication

C. Lo Cicero, N. Mathieu

Services gestion des laboratoires
Services des tutelles

#### 1 Axes stratégiques

#### Microélectronique

I. Vatajelu/TIMA, F. Ducroquet/IMEP-LaHC, M. Kogelschatz/LTM

#### Composants et circuits pour les télécoms

J. Poëtte/IMEP-LaHC, U. Ebels/SPINTEC, R. Siragusa/LCIS

#### Dispositifs de mesure intégrés

D. Bucci/IMEP-LaHC, C. Baraduc/SPINTEC

#### Bio et santé: composants et systèmes

V. Stambouli/LMGP, E. Bano/IMEP-LaHC

#### Matériaux et composants pour l'énergie

R. Hanna/G2ELab, J-L Deschanvres/LMGP, G. Ardila/IMEP-LaHC

#### 2 Plateforme OPE)N(RA

Responsable de plateforme à recruter 31 responsables d'équipements

- Caractérisation électrique
- RF, microondes, ondes millimétriques et numérique haut débit
- MEMS/NEMS
- Optique, THz, photonique
- Champ proche
- Moyens satellites

## **MISSIONS**

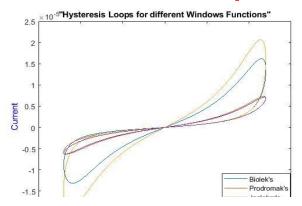


- Créer des synergies entre les équipes
  - Animation des axes stratégiques de recherche transverses
  - Rencontres FMNT : Juin (brainstorming) + Septembre (bilan année et stages)
  - Stages co-encadrés
  - Visites de laboratoires
  - Les méridiennes de la FMNT
  - Journée des doctorants
- Mutualiser (et rationaliser) les équipements
  - Plateforme ouverte de caractérisation fonctionnelle OPE)N(RA
- Répondre aux appels à projets (AàP) :
  - Identification en amont des AàP
  - Montage en amont du projet de recherche

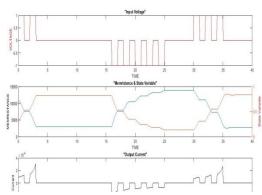


## PRÉSENTATION DE LA FMNT AXES STRATÉGIQUES DE RECHERCHE




## **EXEMPLE #1: AXE MICROÉLECTRONIQUE**




- Enquête → Synergies porteuses identifiées
  - « Nanofils » (synergie à consolider) et « Applications neuromorphiques et d'IA embarquée » (synergie émergente)
- Premières collaborations: architecture neuromorphique pour lA embarquée (thèse Labex MINOS + stage FMNT 2019)

#### **Modélisation compacte ReRam**

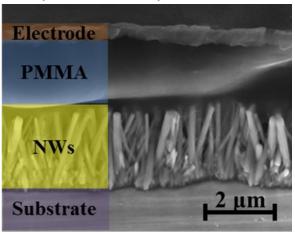
### Simulation temporelle synapse



Stage TIMA
I. Vatajelu
IMEP-LaHC et
LMGP associé

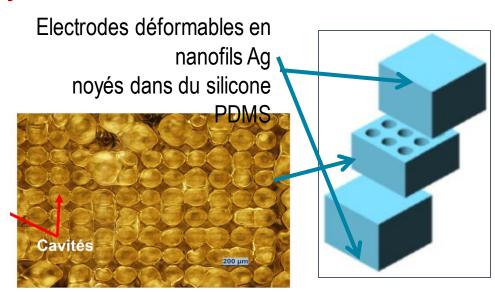


- Contribution à l'Institut IA de Grenoble (MIAI)
  - Aspects liés aux architectures matérielles


## **EXEMPLE #2: AXE ÉNERGIE**



- Conversion et récupération d'énergie (des matériaux aux systèmes)
- Compétences réparties dans les différents laboratoires


## Matériaux et composants piézoélectriques à base de ZnO

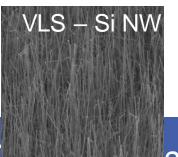
Couches minces, nanofils, matériaux composites et dispositifs associés



LMGP LTM IMEP-LaHC TIMA G2ELAB

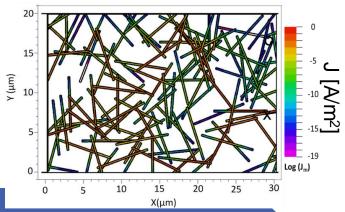
#### Polymères électroactifs microstructurés




Depuis 2018: 4 Stages FMNT, 2 thèses CDP NEED

## **EXEMPLE #3: AXE BIO & SANTÉ**



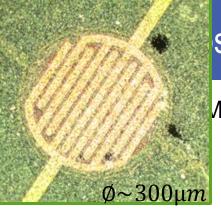

- Projet H2020/RIA Nanonets2Sense
  - Contribution FMNT totalement intégrée

#### Croissance de nanofils



Fabrication d'un nanonet et transfert sur un substrat (Si<sub>3</sub>N<sub>4</sub>, wafer CMOS ou micro hotplates)

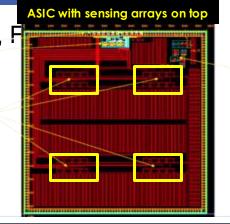
## Transport et contrôle du courant dans les NN-FETs




au nano au

CBD – ZnO NW thèses do post-doc

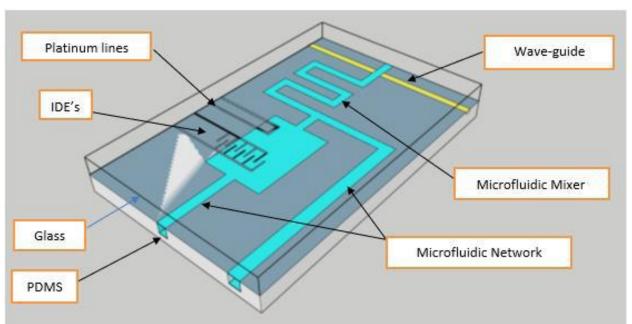
um


C. Ternon, LMGP Grenoble



Fonctionnalisation de surface pour bio-reconnaissance ADN

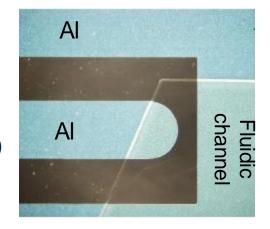
## sant intégrégraus GMQSteurs


И. Legallais, F



## **EXEMPLE #4 CAPTEURS PHYSIQUES**




## Capteur d'impédance intégré pour la microbiologie



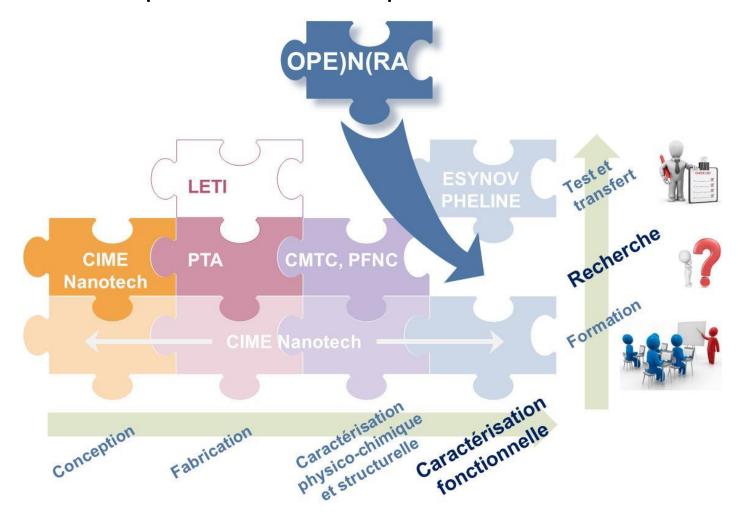


## Stage FMNT (Master Erasmus Mundus avec KU Leuven -2019)

- Technologie : moulage du PDMS, collage moléculaire verre/PDMS, tests d'étanchéité, dépôt des électrodes sur verre
- Optimisation de l'écoulement : géométrie des cavités
- Géométrie des électrodes inter-digitées



G2ELAB/IMEP-LaHC




# PRÉSENTATION DE LA FMNT PLATEFORME DE CARACTÉRISATION FONCTIONNELLE OPE)N(RA

## CRÉATION D'OPE)N(RA



Chaînon manquant au sein des plateformes locales



## OPE)N(RA: LES PÔLES

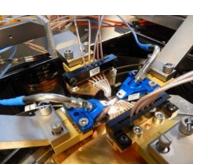


Pôle de Caractérisation ÉLECTRIQUE

Caractérisation électrique (AC, DC, Bruit BF)

Mesures électriques en température [8K-350K]

**Puissance** 


Mesures sous champ magnétique [0T-9T]



PÔLE CHAMP PROCHE C-AFM, MFM, AFM/SMIM

Pôle MEMS/NEMS

Caractérisation électromécanique





PÔLE RF

Caractérisation RF et microondes

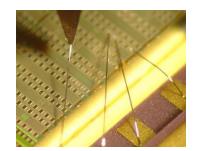
Numérique haut débit

Pôle Photonique

Optique et photonique

Caractérisation THz

**Antennes** 


Caractérisation fonctionnelle de matériaux, composants, circuits.

Échantillons montés en boîtier ou testés sous pointes



PÔLE DES MOYENS SATELLITES





Packaging et mise en forme

Matériaux

Caractérisation physico-chimique

6 Décembre 2021 Rencontre ATSG - FMNT 20

## **OPE)N(RA: ETAT DES LIEUX**



- 5 ans d'existence sous le nom OPEN(RA
- Assemblage de plusieurs plateformes
  - Domaines variés (RF, MEMS, Optique..). Fonctionnements différents
- En 2021, elle est composée de :
  - 127 équipements, 31 responsables d'équipements, 8 implantations
- Supports de communication
  - Site web : <a href="https://fmnt.fr/plateforme-ope-n-ra">https://fmnt.fr/plateforme-ope-n-ra</a>
  - Espace Alfresco : <a href="https://espaces-collaboratifs.grenet.fr">https://espaces-collaboratifs.grenet.fr</a>
- Certification comptable (en cours)
  - Rendre éligible les factures des prestations auprès des financeurs

## **QUESTIONS?**





## MERCI POUR VOTRE ATTENTION