Axe 1-Atelier 4: Biocapteurs Diagnostiques (physiques)

- Modérateurs :
 - Clément Hébert (INSERM)
 - Pascal Mailley (Leti-DTBS)

PROJECT

Systèmes Nanobiotechnologiques et Biomimétiques

(www-timc.imag.fr/synabi)

LABORATOIRE et **TUTELLES**

ITS-Grenoble Axe principal: Explorer et Diagnostiquer

ITS-Grenoble Axe secondaire: Traiter et intervenir

Prep. Biochem. Biotech., 46:546, 2015 Eur. Phys. J., E39:123, 2016 Langmuir, 33:9988, 2017 Scientific Reports, 7:3399, 2017 ACS Nano. 12:8867, 2018 Small. 15:1805046. 2019 Chem. Commun. 55:13152, 2019

Biotechnol. J., 13:1800463, 2018

Symbiotic ion channel-based systems

Symbiotic enzyme-based systems

Scientific Reports, 3:1516, 2013 Chem. Commun., 50:14535, 2014 Energy Environ. Science, 8:1017, 2015 Electrochimica Acta, 269:360, 2018 Mater. Sci. Eng. C, 108:110359, 2020

ANR – project BioWATTS (Univ. Rennes)

- ANR project IMABIC (CEA-IRIG-SyMMES-CAMPE, LGP2, Univ. Poitiers, Biopic SAS)
- SATT project BIOPILE (LRB) (IBFC: CEA-LETI, LGP2, UGA-DCM, Sorin Group)
- **SATT** project MICROBIOTA SAMPLER (CHUGA)
- SATT project SYMBIONT (LRB. CHUGA)
- SATT project ENDOBIOCRINE (GIN)
- Lique Contre le Cancer (2x projects in nanobiotech & cancer biomarkers) (BCI - IMAC)
- Carnot LSI project EXSITE (Murata Europe B.V.)
- Région Rhône-Alpes Auvergne project ENDOPROB (Pelican Health SAS)
- InnovaXN project Nanostructure of Proteins in Membranes (ILL, Surgical Diagnostics Pty Ltd)
- (submitted) ANR Equipex+ project SHyFlex (CEA-LITEN, CEA-LETI, CHUGA)
- SATT / UGA Out-of-Labs project UROLOC

Biomaterials, 34:10099, 2013 PlosONE, 9(6):e99416, 2014 Trends Biotechnol., 34:757, 2016 Trends Biotechnol., 35:1035, 2017 FR1654213, 2016 FR1763088, 2017 FR1902392, 2019 FR1902393, 2019 Nanomedicine, 2020 (accepted, in press)

Bioinspired diagnostic systems

Bioinspired therapeutic systems

équipe inventive et innovante capable d'initier des projets; obtenir de fonds pour la recherche provenant de sources publiques et industrielles; créer de startups; (équipements spécialisés: patch-clamp électrophysiologie, électrochimie, biophysique, dispositif médicale)

Sujets de Collaborations Potentielles

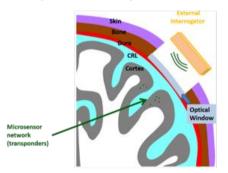
organ-on-chip; microbiote; smart-hybrid-flexible medical devices; electrochemical biosensors; biofuel cells; biomimetic membrane systems; engineering with biology

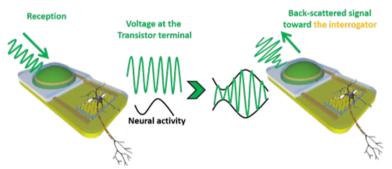
WIMAGINE®: L'IMPLANT CHRONIQUE SANS FIL POUR L'ÉLECTROCORTICOGRAPHIE CLINIQUE

- Dans le cadre du projet BCI, Clinatec a développé un implant ECoG sans fil (WIMAGINE®), des algorithmes de décodage en temps réels et des effecteurs
- Ce système est en cours d'essai clinique pour la suppléance motrice pour les tétraplégiques stabilisés (NCT02550522)
- De nombreux brevets ont été délivrés et des résultats scientifiques publiés dont l'article du Lancet Neurology 2019
- Le CEA travaille maintenant sur:
 - le développement de nouveaux effecteurs
 - l'amélioration du décodage grâce à l'intelligence artificielle
- Le CEA est à la recherche de nouveaux usages cliniques pour tout ou partie du système

Wireless Recording and Stimulation of neural activity using ultrasonic communication

Local collabs



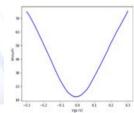


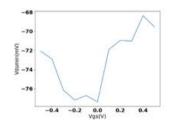
-> Targeted applications

Main target: Neural Prosthesis
Could be interesting for wireless intrabody monitoring and stimulation

-> Project Concept(Recording case)

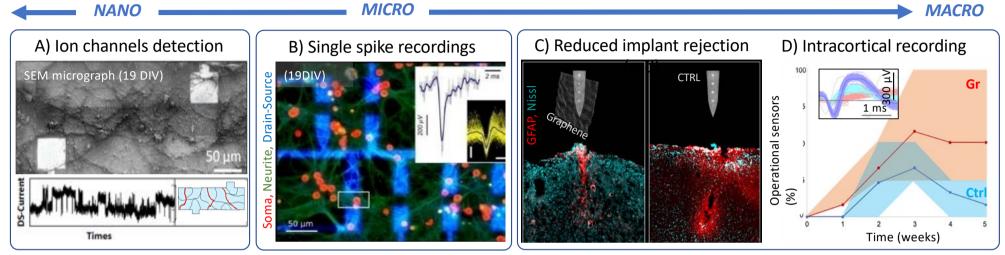
probe, integrated electronic)


The back-scattered signal contains all the neural information

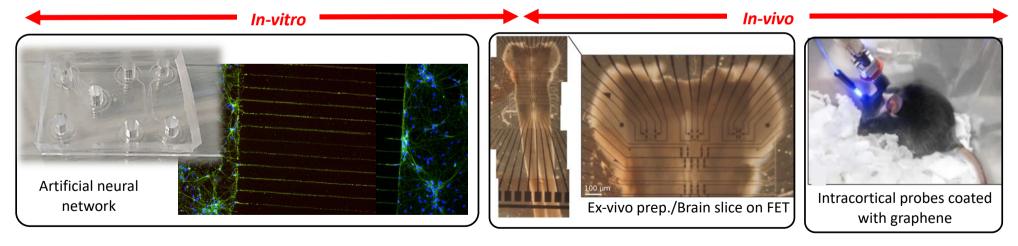

External Interrogator (ultrasonic

-> Skills and Results

Arrays of neural sensor and stimulators Characterization set up for electrodes, transistors Laser vibrometer, Pulse-echo.



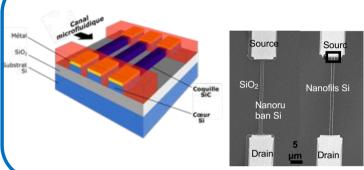
-> Needs for the project:


Specialist in ultrasound generation and detection Specialist in integrated circuit

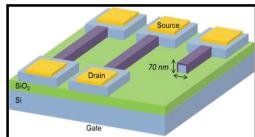
Delacour C.

Project – Picture Neurons activity with Nano-Neuroelectronic

Ultrasensitive and biocompitable nanodevices (typ. Silicon/Graphene FET arrays)

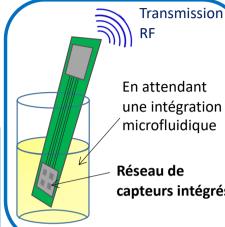

Delacour, Institut Néel, CNRS

Institut des Technologies de la Santé Grenobloises


24/09/20

NWFETs for biosensing Dispositifs miniaturisés pour la détection directe de biomarqueurs par voie électrique → diagnostic in vitro

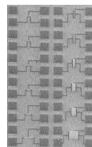
Transducers: Nanotransistors fonctionnalisés


Nanofils parallèles Si, SiC

Silicon Carbide nanowire field effect transistor for DNA detection

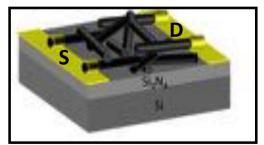
L. Fradetal, et al. Nanotechnology 2016

Biocompatibilité de SiC → vers le in vivo


En attendant une intégration microfluidique

Réseau de capteurs intégrés

Objectif = améliorer les performances de detection: sensibilité, specificité, stabilité fonctionnelle, reproductibilité


Compétences recherchées = spécialistes en biomarqueurs...

FLAG-ERA

Nanonets de Si

Optimization of GOPS-based functionalization process and impact of Aptamer grafting on the Si Nanonet FET electrical properties as first steps towards Thrombin electrical detection M. Vallejo-Perez et al.

Nanomaterials 10 01842 (2020)

Transférables sur substrat flexible

Stambouli V. et al. FMNT: LMGP, IMEP, LTM

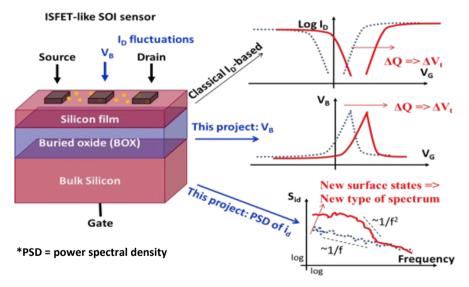
Tutelles: CNRS, GINP

Capteurs de type ISFET basés sur mécanismes originaux de lecture, avec large spectre d'applications

Permanents impliqués: Irina IONICA,

Christoforos THEODORU,

Maryline BAWEDIN


Irina.lonica@grenoble-inp.fr

christoforos.theodorou@grenoble-inp.fr

maryline.bawedin@grenoble-inp.fr

Laboratoire: IMEP-LAHC (Grenoble INP, UGA, CNRS, USMB)

Objectifs: calibrer, évaluer les figures de mérite et optimiser les capteurs basés sur lecture dynamique, pour des applications pragmatiques

Etat de développement actuel / résultats acquis, compétences disponibles :

- La technologie de fabrication d'un capteur
- Une réponse dynamique hors-équilibre et/ou de bruit basse fréquence aux charges déposées sur sa surface
- Compétences disponibles : Fabrication, caractérisation et modélisation électrique

Compétences recherchées :

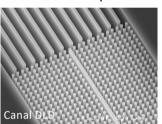
Collaborations avec des acteurs du monde bio-médial pour passer du stade de concept au stade d'application pragmatique.

Utilisation dans le domaine de la santé / Retombés :

- Capteurs de charge versatiles, facilement adaptables à différentes molécules d'intérêt pour les applications
- Possibilité de mise en évidence des phénomènes avec constantes de temps variables
- Une plateforme simple pour évaluer rapidement l'efficacité des recettes de fonctionnalisation de surface

BiopSi: De l'isolement à la détection de marqueurs biologiques

Application des technologies silicium à l'exploration et au diagnostic de pathologies


Contexte

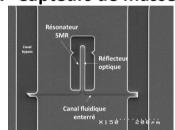
Biopsie liquide: → intérêt pour le diagnostic et le suivi de pathologie

→ mais le tri, l'isolement et la détection des cellules, bactéries, virus ou autres biomarqueurs rendus difficiles selon la complexité du fluide biologique

Isolement et tri fluidique en taille

→ **DLD** (Deterministic Lateral Displacement)

 Isolement ou enrichissement de particules telles que globules rouges, bactéries, vésicules extracellulaires (OG: qques 10µm à qques 100nm)


Détection des particules triées

→ Capteurs FET à nanofils

Fenêtre de détection d'un capteur à nanofils en Si - Insert: coupe TEM d'un nanofil

 Haute sensibilité électrostatique due à la taille des nanofils (OG: 40nm) -> variation de leur conductivité à l'hybridation cible-sonde

→ Capteurs de masse type SMR

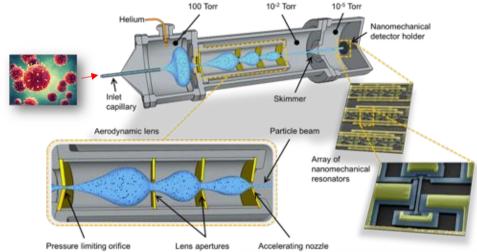
Exemple de résonateur SMR (Suspended Microchannnel Resonator)

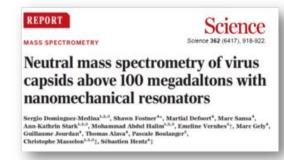
 Analyse en masse ou en déformabilité de particules telles que cellules, organoïdes (OG: du pg au fg)

Motivations

- Rencontre de collaborateurs avec une vision applicative (biologistes, soignants, praticiens hospitaliers...)
- Test et validation biologique et clinique de ces systèmes fluidiques, avec des échantillons d'intérêt (CTCs, virus, vésicules extracellulaires).
- Prise en compte des besoins cliniques pour le développement de nouveaux systèmes permettant d'apporter une aide à la compréhension de mécanismes biologiques.

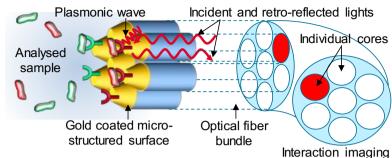
Equipe DTBS
CEA LETI

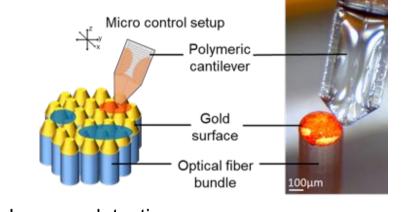

Développement/ validation des
approches diagnostiques


Aide au diagnostic / compréhension des phénomènes biologiques

Partenaires académiques ou hospitaliers

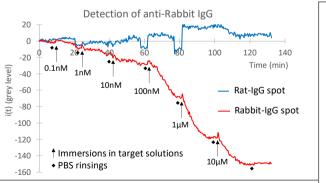
VIRIONEMS: Spectrométrie de masse à nanorésonateurs pour la détection et caractérisation de particules virales.


- Axes: 1. Explorer, Diagnostiquer. | 2. Santé, environnement.
- Applications: 1. Détection de virus | 2 Développement de VLP.
- Technology Readiness Level: 3-4 [Proof of concept]
- Acquis: 1. Prototype de MS à nano-résonateur. | 2. Mesures de masse de capsides > 100 MDa.
- *Objectifs :* 1. Echantillonnage d'aérosols de particules virales. | 2. Etablir la spécificité de la mesure de masse.
- Suite: Transfert de technologie: détection/analyse de virions.
- Ressources: Equipe dédiée (7 personnels) | Prototype et nanocapteurs fonctionnels. | Financements: ERC Consolidator; CEA Instrumentation Détection; GRAL.
- Durée: 4 ans
- Besoins: Post-doc instrumentation | Prototype échantillonnage d'aérosols. | Nano-capteurs 2^{ème} génération.
- Compétences recherchées : Virologie | Biologie structurale |
 Microfluidique.

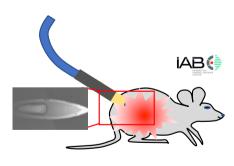


Besoin: développement d'outils dédiés aux diagnostics in vivo par endoscopie.

Descriptif: structuration d'assemblages de fibres pour utilisation comme biocapteurs plasmoniques. Fonctionnalisations localisées par chimie de surface pour immobilisation de sondes spécifiques.


Forces locales: Preuve de concept d'une bio-détection multiplexée, à distance et sans marquage, in vitro, en conditions modèles.

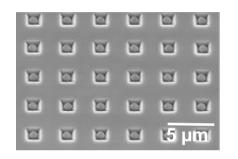
Approche interférométrique en phase d'étude (modélisations, simulations).


Immuno-detection

(CNRS, CEA, UGA)

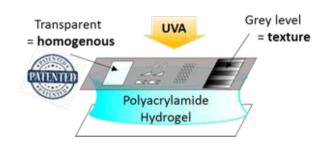
Surface treatment for interferometry Interfering waves

Compétences recherchées : Biologie modèles biologiques pertinents organe artificiel, in vivo. Quid du travail en milieu complexe ? Physique optique – traitement de surface pour guide d'onde (couches minces...).



Micro&NanoTech4Health

Available technologies


capillary or convection guided trapping of nano/micro objects

lens less microscopy : cm-scaled field of view

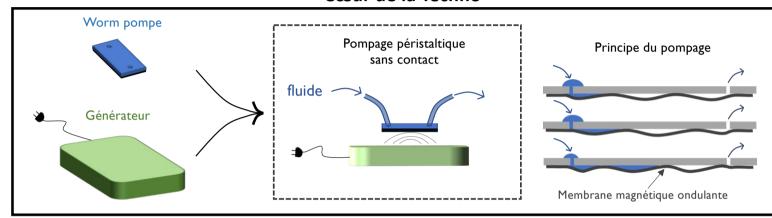
traction force microscopy for measuring cell contractility

rigidity patterned hydrogel for cell culture

Objectives

proofs of concept in the domain of allergy detection and cell contractility dysfunction

Looking for ...


collaboration with medical doctors (allergology)/ chemists of biomolecules/ bio labs on muscular pathologies

Alice NICOLAS/David PEYRADE

LTM

Pump-it! Micro-pompes doseuses intégrables dans les dispositifs de laboratoires sur puces

Cœur de la Techno

Mise en œuvre

Victor VIEILLE Institut Néel/CNRS/Linksium

Institut des Technologies de la Santé Grenobloises

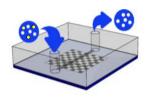
Avantages

- Actionnement sans connexion ni frottement
- Pompage bidirectionnel
- Contrôle direct du débit (0.01-1000 µL/min)
- Facilité d'intégration et d'utilisation
- Système hermétique
- Système compact

Applications

- Automatisation des laboratoires sur puces
- Culture cellulaire automatisée
- Diagnostic/Point of care
- Organe sur puce
- Tests environnementaux
- Chimie en flux

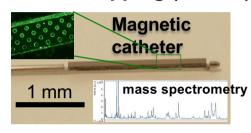
Besoins


- Partenaires de développement intéressés par notre technologie
- · Connaissance des contraintes du terrain
- Tests en condition réelle

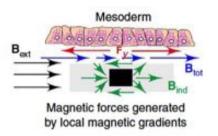
Micro/nano-magnets & pulsed magnetic fields

Micro-magnets developed @ NEEL so far used for:

Cell / antibody trapping (in-vitro)



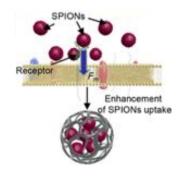
Ampere, G2Elab, LMGP



Protein trapping (in-vivo)

Clinatec

Mechanotransduction

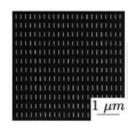

@ embryos

@ cells

Institut Curie

LIPhy

Pulsed fields used to charge cells with magnetic nanoparticles



Czech Academy of Sciences

Now looking for new applications of micro + nano magnets and pulsed fields in biology and medicine

Magnet size: μm -> nm

Magnetic field gradient: $10^6 \text{ T/m} \rightarrow 10^9 \text{ T/m}$

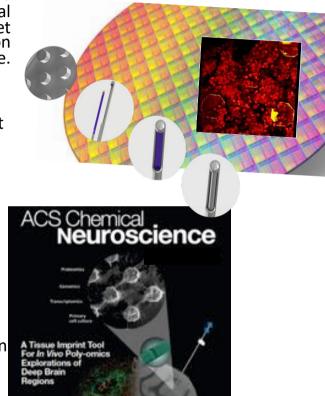
ENORMOUS forces @ μ/nano scale !!!

Nora DEMPSEY, Institut Néel, CNRS

Institut des Technologies de la Santé Grenobloises

24/09/20

BRAINPRINT



- **Besoin:** Exploration théranostique des territoires inaccessibles pour mettre en place une médecine de précision du microenvironnement cérébral : multi-omique, mais aussi physique intégrant haute résolution spatiale et interventionnelle: des tumeurs cérébrales au neurodégénératif et à la prévention environnementale.
- **Descriptif du projet**: approche translationnelle industrielle et bioclinique du concept d'empreinte moléculaire et cellulaire. Applications aux tumeurs cérébrales et exploration cochléaire. Technologie silicium nanoporeux et analyse in situ spectrophysique.
- Technology Readiness Level: 7
- Forces locales: H Lahrech (imagerie), G Offranc-Piret (intégration microélectrode), SPINTEC, Institut Néel (nano-magnétisme), CEA, Edyp, ESRF, Service neurochirurgie, ORL, Neurologie, oncologie, imagerie IRM et nucléaire-Medimprint, Biotem, Vizion, Deker Catin.
- **Compétences recherchées:**
 - technologiques: intégration optique, analyse multi-spectrale, drug delivery, capteurs physiques, miniaturisation
 - Data: intégration des données multimodales individuelles pour une décision thérapeutique n=1
 - Biologique: analyse « single cell » sur l'empreinte, approche Imprint organoïdes, métabolomique
 - Cliniques: extension multi-organes, design d'essais n=1 associant des drogues repositionnées

